Health Risks of PM2.5 Exposure to Public Fuel Filling Station (SPBU) Operators in Ternate City

Authors

  • Purnama Sidebang Program Studi DIII Sanitasi, Poltekkes Kemenkes Ternate
  • Nuke Dianita Program Studi DIII Sanitasi, Poltekkes Kemenkes Ternate

DOI:

https://doi.org/10.32382/sulo.v24i2.976

Keywords:

Environmental Health Risk Analysis (EHRA), PM2.5, Gas Station Operator

Abstract

The increase in community activity along with the increase in the number of motorized vehicles in Ternate City will affect air pollution due to the burning of motorized fuel. Motorized vehicles are the largest contributor to air pollution and the transportation sector causes 50% of the prevalence of pain in Indonesia. Gas station operators also have the risk of being exposed to pollutants such as PM2.5, PM10, CO, NO2 and other pollutants every day. These pollutants can come from motor vehicle emissions during the queue process for refueling and when leaving after refueling. It can also come from ambient air pollution around gas stations, where gas stations are usually strategically located near main roads. Exposure to high and continuous doses can have an impact on the health of gas station operators. This study aims to analyze environmental health risks due to exposure to PM2.5 in gas station operators in Ternate City. This is an observational study using the Environmental Health Risk Analysis (ARKL) method, so that a Risk Quotient (RQ) value is obtained, RQ > 1 (risky and needs to be controlled) or RQ ≤ 1 (risk does not need to be controlled). The results showed that the average respondent was female (56.2%), aged 43.6 years with a weight of 66.4 kg and had a high school/vocational education (68.8) with a smoking lifestyle (56.2%) and not consuming alcohol (81.2%). The health complaints most frequently experienced by operators were fatigue (81.2%) and headaches (56.2). The average concentration of PM2.5 at the Kalumata gas station in the morning measurements was 0.02mg/m3, afternoon and evening were 0.01mg/m3. Meanwhile at the Maliaro gas station, morning measurements were 0.06mg/m3, afternoon measurements were 0.02mg/m3 and afternoon measurements were 0.01mg/m3. Intakes of PM2.5 at gas station operators were highest in the morning measurements at Maliaro gas station, at 0.0146mg/kg/day. The results of calculating the PM2.5 Risk Level show a value of RQ>1 at the Maliaro gas station in the morning measurement. This shows the need to control exposure to PM2.5 at Maliaro gas stations, especially in the morning so that it does not cause health problems in the next 30 years.

References

Anderson, J. O., Thundiyil, J. G., & Stolbach, A. (2012). Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. Journal of Medical Toxicology, 8(2), 166–175. https://doi.org/10.1007/s13181-011-0203-1

Chen, Z., Xie, X., Cai, J., Chen, D., Gao, B., He, B., Cheng, N., & Xu, B. (2018). Understanding Meteorological Influences on PM2.5 Concentrations Across China : A Temporal and Spatial Perspective. Atmospheric Chemistry and Physics, 18, 5343–5358. https://doi.org/https://doi.org/10.5194/acp-18-5343-2018

Fajar, M. F., Rosita, Y., & Pramayastri, V. (2022). Karakteristik Pekerja Spbu Dengan Keluhan Kesehatan Akibat Terpapar Timbal. OKUPASI: Scientific Journal of Occupational Safety & Health, 2(1), 25–33.

Falahdina, A. (2017a). Analisis Risiko Kesehatan Lingkungan Pajanan PM2,5 Pada Pedagang Tetap Di Terminal Kampung Rambutan. Universitas Islam Negeri Syarif Hidayatullah Jakarta.

Fu, X., Wang, X., Hu, Q., Li, G., Ding, X., Zhang, Y., He, Q., Liu, T., Zhang, Z., Yu, Q., Shen, R., & Bi, X. (2015). Changes in Visibility With PM2.5 Composition and Relative Humidity at A Background Site in The Pearl River Delta Region. Journal of Environmental Sciences, 40, 10–19. https://doi.org/10.1016/j.jes.2015.12.001

Gusnita, D., & Cholianawati, N. (2019). Pollutant Concentration and Trajectory Patterns of PM2.5 Including Meteo Factors in Jakarta City. Jurnal Kimia Dan Pendidikan Kimia, 4(3), 152–163. https://doi.org/10.20961/jkpk.v4i3.35028

Haryanto, B. (2018). Climate Change and Urban Air Pollution Health Impacts in Indonesia. In R. Akhtar & C. Palagiano (Eds.), Climate Change and Air Pollution (pp. 215–239). Springer International Publishing. https://doi.org/10.5124/jkma.2011.54.2.175

Hester, R. E., Harrison, R. M., & Querol, X. (2016). Airborne Particulate Matter: Sources, Atmospheric Processes and Health. In R. E. Hester, R. M. Harrison, & X. Querol (Eds.), Airborne Particulate Matter: Sources, Atmospheric Processes and Health. the Royal Society of Chemistry. https://doi.org/10.1039/9781782626589-FP001

Jimoda, L. A. (2012). Effects of Particulate Matter on Human Health, the Ecosystem, Climate and Materials: a Review. Facta Universitatis, 9(1), 27–44.

Jusuf, herlina, Prasetya, E., & Igirisa, N. (2023). Analisis Risiko Kesehatan Lingkungan Pajanan Particulate Matter (PM10) dan Karbon Monoksida (CO) Pada Masyarakat Di Desa Buata Kecamatan Botupingge. Jurnal Sulolipu : Media Komunikasi Sivitas Akademika Dan Masyarakat, 23(1). https://ojs3.poltekkes-mks.ac.id/index.php/medkasi/article/view/428

Kemenkes RI. (2012). Pedoman Analisis Risiko Kesehatan Lingkungan (Guidance on Environmental Health Risk Analysis). Dirjen P2PL.

Kementerian Kesehatan. (2019). Laporan Nasional Riskesdas 2018. Badan penelitan dan Pengembangan Kesehatan.

Ma’rufi, I. (2017). Analisis Risiko Kesehatan Lingkungan (SO2 , H2S, NO2 dan TSP) Akibat Transportasi Kendaraan Bermotor di Kota Surabaya. MPI (Media Pharmaceutica Indonesiana), 1(4), 189–196. https://doi.org/10.24123/mpi.v1i4.770

Muliane, U., & Lestari, P. (2011). Pemantauan Kualitas Udara Ambien Daerah Padat Lalu Lintas dan Komersial DKI Jakarta: Analisis Konsentrasi PM2,5 Dan Black Carbon. Jurnal Teknik Lingkungan, 17(2), 178–188.

Pangestika, R., & Wilti, I. R. (2021a). Karakteristik Risiko Kesehatan Non-Karsinogenik Akibat Pajanan PM2,5 di Tempat-Tempat Umum Kota Jakarta. Jurnal Kesehatan Lingkungan Indonesia, 20(1), 7–14. https://doi.org/10.14710/jkli.20.1.7-14

Pangestika, R., & Wilti, I. R. (2021b). Karakteristik Risiko Kesehatan Non-Karsinogenik Akibat Pajanan PM2,5 di Tempat-Tempat Umum Kota Jakarta. Jurnal Kesehatan Lingkungan Indonesia, 20(1), 7–14. https://doi.org/10.14710/jkli.20.1.7-14

Pemerintah, P. (2021). Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2021 Tentang Penyelenggaraan Perlindungan Dan Pengelolaan Lingkungan Hidup (22 tahun 2021). Art. 22 tahun 2021.

Polri. (2023). Jumlah Data Kendaraan Bermotor Provinsi Maluku Utara. http://rc.korlantas.polri.go.id:8900/eri2017/laprekappolres.php?kdpolda=20&poldanya=MALUKU UTARA

Rosalia, O., Wispriyono, B., & Kusnoputranto, H. (2018). Karakteristik Risiko Kesehatan Non Karsinogen Pada Remaja Siswa Akibat Pajanan Inhalasi Debu Particulate Matter <2,5 (PM2,5). Media Kesehatan Masyarakat Indonesia, 14(1), 26. https://doi.org/10.30597/mkmi.v14i1.2079

Septian Maksum, T., & Flora Ninta Tarigan, S. (2022). Analisis Risiko Kesehatan Akibat Paparan Partikel Debu (PM 2,5) Dari Aktivitas Transportasi. Jambura Health and Sport Journal, 4(1), 19–28. https://ejurnal.ung.ac.id/index.php/jhsj/article/download/13447/3964

Ugochukwu C, O., Ijioma N, O., & Ikechukwu, O. (2014). Environmental Impact Assesment of Petrol and Gas Filling Stations On Air Quality In Umuahia, Nigeria. Global Journal of Engineering Research, 13, 11–20. https://doi.org/http://dx.doi.org/10.4314/gjer.v13i1.2

US.EPA. (2018). Criteria Air Pollutants. Www.Epa.Gov. https://www.epa.gov/criteria-air-pollutants

Wang, J., & Ogawa, S. (2015). Effects of Meteorological Conditions on PM 2.5 Concentrations in Nagasaki, Japan. International Journal of Environmental Research and Public Health, 12, 9089–9101. https://doi.org/10.3390/ijerph120809089

WHO. (2018). WHO Global Ambient Air Quality Database (update 2018).

Published

2024-12-09