Innovation of Moving Bed Reactor Technology in Wastewater Treatment: A Bibliometric Review
DOI:
https://doi.org/10.32382/sulo.v25i1.1426Keywords:
Moving Bed Reactor (MBR), Wastewater treatment, Technological innovation, Biofilm reactor, Bibliometric reviewAbstract
Wastewater treatment is essential in maintaining ecosystem balance and public health. Increasing population and industrialization generate abundant wastewater, demanding more efficient and effective treatment solutions. Biofilm technology, specifically Moving Bed Biofilm Reactors (MBBR), has been recognized as an effective method in reducing wastewater pollution. Biofilm utilizes buffer media in biological reactors to support the growth of bacteria that decompose various pollutants, including nitrogen compounds, carbon, pharmaceuticals, industrial chemicals, and other micropollutants that are key parameters of wastewater quality. MBBR increases the removal efficiency of Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and nitrogen compounds through nitrification and denitrification. This study investigates the evolution of biofilm technology research for wastewater treatment with a focus on MBBR. Bibliometric analysis shows the global trends, organizations, institutions, and authors that have contributed most to MBBR research over the past decade. Data were collected from the Scopus database and analyzed using Excel, OpenRefine, Tableau, and VOSviewer. Results showed a significant increase in the number of publications related to biofilm technology and MBBR, with an annual increase of 8.43%. China was the main contributor with 1,026 publications, followed by India, Denmark, and the United States. Although MBBR is recognized as effective, more research is needed on the dynamics of the microbial community and the influence of operational variables on its performance. These findings highlight the importance of MBBR technology in wastewater treatment and provide insight into future research directions. Future research should focus on the development of new, more efficient biocarriers, in-depth understanding of microbial community dynamics in MBBRs, and optimization of operational parameters. Integration of MBBR technology with other treatment technologies is also a promising area to be explored.
Keywords: Moving Bed Reactor (MBR), Wastewater treatment, Technological innovation, Bibliometric review, Biofilm reactor
References
REFERENSI
Adegoke, A. E., Abel, O. M., Ikechukwuka, E. M., Opeyemi, A. O. M., & Nifemi, A. O. (2023). Microbial Biofilm Reactor for Sustainable Wastewater Treatment. In A. S. Mathuriya, S. Pandit, & N. K. Singh (Eds.), Green Technologies for Industrial Waste Remediation (pp. 285–316). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-46858-2_14
Ali, S. M., & Aziz, S. Q. (2024). Combining dissolved air flotation (DAF) and modified Moving Bed Biofilm Reactors (MMBBR) for synthetic oily wastewater treatment. Global Nest Journal, 26(4). https://doi.org/10.30955/gnj.005451
Alizadeh, S., Abdul Rahim, A., Guo, B., Hawari, J., Ghoshal, S., & Comeau, Y. (2019). Impacts of Continuous Inflow of Low Concentrations of Silver Nanoparticles on Biological Performance and Microbial Communities of Aerobic Heterotrophic Wastewater Biofilm. Environmental Science and Technology, 53(15), 9148–9159. https://doi.org/10.1021/acs.est.9b01214
Aqeel, H., & Liss, S. N. (2020). Autotrophic Fixed-Film Systems Treating High Strength Ammonia Wastewater. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.551925
Ashkanani, A., Almomani, F., Khraisheh, M., Bhosale, R., Tawalbeh, M., & AlJaml, K. (2019). Bio-carrier and operating temperature effect on ammonia removal from secondary wastewater effluents using moving bed biofilm reactor (MBBR). Science of the Total Environment, 693. https://doi.org/10.1016/j.scitotenv.2019.07.231
Banti, D. C., Samaras, P., Kostopoulou, E., Tsioni, V., & Sfetsas, T. (2023). Improvement of MBBR-MBR Performance by the Addition of Commercial and 3D-Printed Biocarriers. Membranes, 13(8). https://doi.org/10.3390/membranes13080690
Barwal, A., & Chaudhary, R. (2014). To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: A review. Reviews in Environmental Science and Biotechnology, 13(3), 285–299. https://doi.org/10.1007/s11157-014-9333-7
Biswas, K., Taylor, M. W., & Turner, S. J. (2014). Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater. Applied Microbiology and Biotechnology, 98(3), 1429–1440. https://doi.org/10.1007/s00253-013-5082-8
Boavida-Dias, R., Silva, J. R., Santos, A. D., Martins, R. C., Castro, L. M., & Quinta-Ferreira, R. M. (2022). A Comparison of Biosolids Production and System Efficiency between Activated Sludge, Moving Bed Biofilm Reactor, and Sequencing Batch Moving Bed Biofilm Reactor in the Dairy Wastewater Treatment. Sustainability (Switzerland), 14(5). https://doi.org/10.3390/su14052702
Casas, M. E., Chhetri, R. K., Ooi, G., Hansen, K. M. S., Litty, K., Christensson, M., Kragelund, C., Andersen, H. R., & Bester, K. (2015). Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR). Water Research, 83, 293–302. https://doi.org/10.1016/j.watres.2015.06.042
Deng, L., Guo, W., Ngo, H. H., Zhang, X., Wang, X. C., Zhang, Q., & Chen, R. (2016). New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor–membrane bioreactor system. Bioresource Technology, 208, 87–93. https://doi.org/10.1016/j.biortech.2016.02.057
Dzihora, Y., Aparecida da Silva, K., Korczyk, K., Teja Nelabhotla, A. B., Kjeldsberg, L. A., Rasooli, R., & Wang, S. (2023). Granular and moving bed biofilm reactor-based wastewater treatment plant. In Material-Microbes Interactions (pp. 439–468). Elsevier. https://doi.org/10.1016/B978-0-323-95124-1.00016-4
Ghangrekar, M. M., Sathe, S. M., & Chakraborty, I. (2023). Moving bed biofilm bioreactors for wastewater treatment. In Material-Microbes Interactions (pp. 425–437). Elsevier. https://doi.org/10.1016/B978-0-323-95124-1.00001-2
Ginter-Kramarczyk, D., Kruszelnicka, I., Michałkiewicz, M., Muszyński, P., Zajchowski, S., & Tomaszewska, J. (2021). Biofilm on the polymer composites - qualitative and quantitative microbiological analysis. Journal of Environmental Health Science and Engineering, 19(1), 641–649. https://doi.org/10.1007/s40201-021-00634-9
Gzar, H. A., Al-Rekabi, W. S., & Shuhaieb, Z. K. (2021). Applicaion of Moving Bed Biofilm Reactor (MBBR) for Treatment of Industrial Wastewater: A mini Review. Journal of Physics: Conference Series, 1973(1), 012024. https://doi.org/10.1088/1742-6596/1973/1/012024
Hashtroudi, H., Farhadian, M., & Borghei, M. (2023). Beet sugar wastewater treatment in a hybrid biological reactor: operational optimization and kinetic coefficients calculation. Advances in Environmental Technology, 9(4), 339–350. https://doi.org/10.22104/aet.2023.6325.1736
Ibrahim, H. T., Al-Aboodi, A. H., & Abbas, S. A. (2018). Nutrients Removal from Domestic Wastewater in Basrah City (Southern Iraq) using Combined A2/O Bio Contact Oxidation Technology. In L. Ling, K. H. Leong, Y. F. Huang, & K. W. Tan (Eds.), E3S Web of Conferences (Vol. 65). EDP Sciences. https://doi.org/10.1051/e3sconf/20186505001
Jang, D., Won, J., Jo, Y., Kim, Y.-O., & Jang, A. (2023). Effect of biocarriers on the nitrification and microbial community in moving bed biofilm reactor for anaerobic digestion effluent treatment. Environmental Research, 232. https://doi.org/10.1016/j.envres.2023.116350
Kowalski, M. S., Devlin, T. R., & Oleszkiewicz, J. A. (2018). Start-up and long-term performance of anammox moving bed biofilm reactor seeded with granular biomass. Chemosphere, 200, 481–486. https://doi.org/10.1016/j.chemosphere.2018.02.130
Kristanti, R., Seng, B., Kumar, R., & Mohamed, A. (2023). Municipal wastewater treatment technologies in malaysia: a short review. Industrial and Domestic Waste Management, 3(1), 38-46. https://doi.org/10.53623/idwm.v3i1.243
Leyva-Díaz, J. C., Muñío, M. M., González-López, J., & Poyatos, J. M. (2016). Anaerobic/anoxic/oxic configuration in hybrid moving bed biofilm reactor-membrane bioreactor for nutrient removal from municipal wastewater. Ecological Engineering, 91, 449–458. https://doi.org/10.1016/j.ecoleng.2016.03.006
Li, M., Liu, Y., Zhou, X., Wang, N., & Yuan, B. (2023). A Study on The Carriers Compound Multi-Stage MBBR Biological Treatment Process for Domestic Sewage. Sustainability, 15(10), 7922. https://doi.org/10.3390/su15107922
Liu, C., Chen, L., Xu, A., & Song, Z. (2023). Evaluation of polyurethane sponge biocarrier effects on Litopenaeus vannamei cultivation in zero water exchange systems based on water quality, shrimp performance and bacterial community analysis. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1326194
Madan, S., Madan, R., & Hussain, A. (2022). Advancement in biological wastewater treatment using hybrid moving bed biofilm reactor (MBBR): a review. Applied Water Science, 12(6), 141. https://doi.org/10.1007/s13201-022-01662-y
Malovanyy, A., Yang, J., Trela, J., & Plaza, E. (2015). Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment. Bioresource Technology, 180, 144–153. https://doi.org/10.1016/j.biortech.2014.12.101
Mazioti, A. A., Koutsokeras, L. E., Constantinides, G., & Vyrides, I. (2021). Untapped potential of Moving Bed Biofilm Reactors with different biocarrier types for bilge water treatment: A laboratory‐scale study. Water (Switzerland), 13(13). https://doi.org/10.3390/w13131810
Morgan-Sagastume, F. (2018). Biofilm development, activity and the modification of carrier material surface properties in moving-bed biofilm reactors (MBBRs) for wastewater treatment. Critical Reviews in Environmental Science and Technology, 48(5), 439–470. https://doi.org/10.1080/10643389.2018.1465759
Ødegaard, H. (2016). A road-map for energy-neutral wastewater treatment plants of the future based on compact technologies (including MBBR). Frontiers of Environmental Science and Engineering, 10(4). https://doi.org/10.1007/s11783-016-0835-0
Ooi, G. T. H., Tang, K., Chhetri, R. K., Kaarsholm, K. M. S., Sundmark, K., Kragelund, C., Litty, K., Christensen, A., Lindholst, S., Sund, C., Christensson, M., Bester, K., & Andersen, H. R. (2018). Biological removal of pharmaceuticals from hospital wastewater in a pilot-scale staged moving bed biofilm reactor (MBBR) utilising nitrifying and denitrifying processes. Bioresource Technology, 267, 677–687. https://doi.org/10.1016/j.biortech.2018.07.077
Persson, F., Sultana, R., Suarez, C., Hermansson, M., Plaza, E., & Wilén, B.-M. (2014). Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation-anammox at low temperatures. Bioresource Technology, 154, 267–273. https://doi.org/10.1016/j.biortech.2013.12.062
Raudkivi, M., Zekker, I., Rikmann, E., Vabamäe, P., Kroon, K., & Tenno, T. (2017). Nitrite inhibition and limitation - The effect of nitrite spiking on anammox biofilm, suspended and granular biomass. Water Science and Technology, 75(2), 313–321. https://doi.org/10.2166/wst.2016.456
Saidulu, D., Majumder, A., & Gupta, A. K. (2021). A systematic review of moving bed biofilm reactor, membrane bioreactor, and moving bed membrane bioreactor for wastewater treatment: Comparison of research trends, removal mechanisms, and performance. Journal of Environmental Chemical Engineering, 9(5). https://doi.org/10.1016/j.jece.2021.106112
Shokoohi, R., Asgari, G., Leili, M., Khiadani, M., Foroughi, M., & Sedighi Hemmat, M. (2017). Modelling of moving bed biofilm reactor (MBBR) efficiency on hospital wastewater (HW) treatment: a comprehensive analysis on BOD and COD removal. International Journal of Environmental Science and Technology, 14(4), 841–852. https://doi.org/10.1007/s13762-017-1255-9
Singh, S. P., Sharma, M. K., Kumar, C., & Gaur, R. C. (2022). Effect of Filter Media on Performance of Biofilm Reactor for Treatment of Domestic Wastewater. Journal of Hazardous, Toxic, and Radioactive Waste, 26(3). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000700
Subroto, M., Prayogo, W., Soewondo, P., & Setiyawan, A. (2022). Organic removal in domestic wastewater using anaerobic treatment system-mbbr with flow recirculation ratio and intermittent aeration. Indonesian Journal of Urban and Environmental Technology, 296-316. https://doi.org/10.25105/urbanenvirotech.v5i3.12776
Sun, Y., Huang, L., Lai, C., Li, H., & Yang, P. (2021). Removal of organics from shale gas fracturing flowback fluid using expanded granular sludge bed and moving bed biofilm reactor. Environmental Technology (United Kingdom), 42(24), 3736–3746. https://doi.org/10.1080/09593330.2020.1739750
Tang, K., Ooi, G. T. H., Litty, K., Sundmark, K., Kaarsholm, K. M. S., Sund, C., Kragelund, C., Christensson, M., Bester, K., & Andersen, H. R. (2017). Removal of pharmaceuticals in conventionally treated wastewater by a polishing moving bed biofilm reactor (MBBR) with intermittent feeding. Bioresource Technology, 236, 77–86. https://doi.org/10.1016/j.biortech.2017.03.159
Torresi, E., Fowler, S. J., Polesel, F., Bester, K., Andersen, H. R., Smets, B. F., Plósz, B. G., & Christensson, M. (2016). Biofilm thickness influences biodiversity in nitrifying MBBRs - Implications on micropollutant removal. Environmental Science and Technology, 50(17), 9279–9288. https://doi.org/10.1021/acs.est.6b02007
Walker, P., Nerenberg, R., Pizarro, G., Aybar, M., Pavissich, J. P., González, B., & Pastén, P. (2024). Nitrate increases the capacity of an aerobic moving-bed biofilm reactor (MBBR) for winery wastewater treatment. Water Science & Technology, 89(6), 1454–1465. https://doi.org/10.2166/wst.2024.060
Wang, G., Hambly, A. C., Dou, Y., Wang, G., Tang, K., & Andersen, H. R. (2022). Polishing micropollutants in municipal wastewater, using biogenic manganese oxides in a moving bed biofilm reactor (BioMn-MBBR). Journal of Hazardous Materials, 427. https://doi.org/10.1016/j.jhazmat.2021.127889
Xu, X., Wang, G., Zhou, L., Yu, H., & Yang, F. (2018). Start-up of a full-scale SNAD-MBBR process for treating sludge digester liquor. Chemical Engineering Journal, 343, 477–483. https://doi.org/10.1016/j.cej.2018.03.032
Yang, X., López-Grimau, V., Vilaseca, M., & Crespi, M. (2020). Treatment of textilewaste water by CAS, MBR, and MBBR: A comparative study from technical, economic, and environmental perspectives. Water (Switzerland), 12(5). https://doi.org/10.3390/W12051306
Yuan, Q., Wang, H., Hang, Q., Deng, Y., Liu, K., Li, C., & Zheng, S. (2015). Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent. Environmental Science and Pollution Research, 22(18), 13970–13979. https://doi.org/10.1007/s11356-015-4546-z
Zhang, Q., Chen, X., Zhang, Z., Luo, W., Wu, H., Zhang, L., Zhang, X., & Zhao, T. (2020). Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high ammonia nitrogen wastewater treatment. Bioresource Technology, 315. https://doi.org/10.1016/j.biortech.2020.123813
Zhang, X., Zuo, S., Li, S., Shang, Y., Du, Q., Wang, H., Guo, W., & Ngo, H. H. (2023). Responses of biofilm communities in a hybrid moving bed biofilm reactor-membrane bioreactor system to sulfadiazine antibiotic exposure. Bioresource Technology, 382. https://doi.org/10.1016/j.biortech.2023.129126
Zinatizadeh, A. A. L., & Ghaytooli, E. (2015). Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR): Process modeling and optimization. Journal of the Taiwan Institute of Chemical Engineers, 53, 98–111. https://doi.org/10.1016/j.jtice.2015.02.034
Downloads
Published
Issue
Section
PDF (Bahasa Indonesia) downloaded: 14