In-Silico Analysis of Momordica charantia L. As Antidiabetic Agents Through Activation of Human UDP-Galactose 4-Epimerase Receptors
DOI:
https://doi.org/10.32382/mf.v20i2.1002Kata Kunci:
Momordica charantia, Metformin, Human UDP-Galactose 4-Epimerase Receptors, In silico analysisAbstrak
Analisa In-Silico (Momordica charantia L.) Sebagai Senyawa Antidiabetes Melalui Aktivasi Reseptor UDP-Galactose 4-Epimerase Manusia
Potensi antidiabetes dari senyawa yang ditemukan dalam Momordica charantia L. yang dikenal sebagai pare diselidiki melalui docking molekuler dan analisis ADME. Beberapa senyawa bioaktif dari pare, seperti charantin, vicine, momordenol, momordicilin, dan momordikosida dianalisis secara in silico saat berinteraksi dengan reseptor UDP-4 manusia. Hasil docking menunjukkan bahwa senyawa-senyawa tersebut menunjukkan afinitas ikatan yang kuat dalam regulasi glukosa. Analisis ADME menunjukkan bahwa senyawa tersebut mematuhi Lipinski Rule of Five, dengan sifat yang menguntungkan seperti obat dan beberapa senyawa perlu dilakukan uji toksisitas. Hasil penelitian ini menunjukkan bahwa Momordica charantia L. memiliki potensi sebagai antidiabetes yang perlu dikonfirmasi secara in vivo dan uji klinis terkait efikasi dan keamanan dalam manajemen diabetes mellitus.
This study investigates the antidiabetic potential of compounds found in Momordica charantia L., commonly known as bitter melon, through molecular docking and ADME (Absorption, Distribution, Metabolism, and Excretion) analysis. Utilizing in silico methods, several bioactive compounds from bitter melon, such as charantin, vicine, momordenol, momordicilin, and momordicoside, were evaluated for their ability to interact with the human UDP-Galactose 4-Epimerase receptor, a key enzyme involved in glucose metabolism. The docking results indicate that these compounds exhibit strong binding affinities, suggesting their role in glucose regulation. Further ADME analysis revealed that the compounds generally comply with the Lipinski Rule of Five, indicating favorable drug-like properties, though some compounds exhibited potential toxicities requiring further investigation. These findings highlight the potential of Momordica charantia as a source of antidiabetic agents, warranting additional in vivo and clinical studies to confirm their efficacy and safety in managing diabetes mellitus.
Referensi
Abdelwahab, D. A., & El-Mahdy, H. A. (2021). Therapeutic applications of Momordica charantia L. (bitter melon) and its bioactive compounds: Anticancer potential and mechanism of action. Journal of Functional Foods, 79, 104374.
Ahmad, A., & Khan, M. A. (2021). Exploring bioactive compounds from medicinal plants using computational techniques for drug discovery. Journal of Ethnopharmacology, 276, 114-124.
Al-Tikrity, E., et al. (2020). Advances in molecular docking and dynamics simulations toward the understanding of protein-ligand interactions and SAR. Journal of Computer-Aided Molecular Design, 34(9), 843-853.
Bagchi, D. (2018). Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome—2nd Edition. Acta Endocrinologica (Bucharest), 14(3), 438–438. https://doi.org/10.4183/aeb.2018.438
Borg, A. J. E., Dennig, A., Weber, H., & Nidetzky, B. (2021). Mechanistic characterization of UDP‐glucuronic acid 4‐epimerase. The FEBS Journal, 288(4), 1163–1178. https://doi.org/10.1111/febs.15478
Devitria, R., Elfia, M., Yesti, Y., & Rafa, H. N. (2024). Uji Aktivitas Antidiabetes Ekstrak Etanol Biji Buah Pare (Momordica Charantia) Pada Mencit (Mus Musculus). Ensiklopedia of Journal, Vol. 6 No. 2.
Graham, G. G., Punt, J., Arora, M., Day, R. O., Doogue, M. P., Duong, J. K., Furlong, T. J., Greenfield, J. R., Greenup, L. C., Kirkpatrick, C. M., Ray, J. E., Timmins, P., & Williams, K. M. (2011). Clinical Pharmacokinetics of Metformin. Clin Pharmacokinet.
Herawati, L. W., & Himawan, N. S. S. (2021). Penggunaan Metformin terhadap Kejadian Efek Samping Mual Muntah pada Pasien Diabetes Melitus. Jurnal Pendidikan Tambusa Volume 5 Nomor 3 Tahun 2021.
Hou, T., Zhang, W., Wang, J., & Wang, W. (2017). Recent advances in computational prediction of drug absorption and permeability in drug discovery. Current Medicinal Chemistry, 24(8), 785-799.
Kerns, E. H., & Di, L. (2015). Drug-like properties: Concepts, structure design, and methods from ADME to toxicity optimization. Elsevier, 2nd edition.
Keserű, G. M., & Makara, G. M. (2019). The influence of lead discovery strategies on the properties of drug candidates. Nature Reviews Drug Discovery, 18(3), 197-215.
Lipinski, C. A. (2016). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 22, 31-35.
Lombardo, F., Berellini, G., & Obach, R. S. (2018). Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 1352 drug compounds. Drug Metabolism and Disposition, 46(11), 1466-1477.
Ma, Y., Zhao, S., & Wu, L. (2020). Recent advances in computational toxicity prediction of chemicals: A review. Chemical Research in Toxicology, 33(5), 1316-1326.
Mollica, A., Costante, R., & Stefanucci, A. (2020). Natural products as inhibitors of UDP-galactose 4-epimerase: Potential treatments for rare metabolic disorders. Medicinal Research Reviews, 40(3), 1200-1222.
Obach, R. S. (2018). Predicting clearance in humans from in vitro data. Current Topics in Medicinal Chemistry, 18(6), 553-560.
Perez, J. L., Jayaprakasha, G. K., & Patil, B. S. (2019). Metabolite profiling and in vitro biological activities of two commercial bitter melon (Momordica charantia Linn.) cultivars. Food Chemistry, 288, 178–186. https://doi.org/10.1016/j.foodchem.2019.02.120
Pramesthi ADED, Lukitaningsih E, Nugroho AE. Potential Pharmacokinetics and Pharmacodynamics (PK-PD) Drug-Herbs Interactions (DHI) from Metformin and Traditional Medicines: A Literature Review. Pharmacogn J. 2022;14(1): 235-244.
Rena, G., Hardie, D. G., & Pearson, E. R. (2017). The mechanisms of action of metformin. Diabetologia, 60(9), 1577–1585. https://doi.org/10.1007/s00125-017-4342-z
Salmaso, V., & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand–protein recognition process: An overview. Frontiers in Pharmacology, 9, 923.
Syamsul, E. S., Nugroho, A. E., & Pramono, S. (2011). Metformin Pada Tikus DM Tipe 2 Resisten Insulin. Majalah Obat Tradisional, 16(3), 124 – 132, 2011.
Wicaksono, B., Handoko, Y., Arung, E., Kusuma, I., Yulia, D., Pancaputra, A., & Sandra, F. (2014). Antiproliferative Effect of the Methanol Extract of Piper crocatum Ruiz & Pav Leaves on Human Breast (T47D) Cells In-vitro. Tropical Journal of Pharmaceutical Research, 8(4). https://doi.org/10.4314/tjpr.v8i4.45229
Williams, D. P., & Lazic, S. E. (2019). Drug-induced liver injury and its diagnosis using machine learning. Toxicology, 425, 152230.
Woodruff, T. J., & Sutton, P. (2014). The Navigation Guide systematic review methodology: a rigorous and transparent method for translating environmental health science into better health outcomes. Environmental Health Perspectives, 122(10), 1007-1014.
Zhuang, X., & Lu, C. (2016). PBPK modeling and simulation in drug research and development. Acta Pharmaceutica Sinica B, 6(5), 430-440.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Media Farmasi
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.